fMRI as a Biomarker Reliability, QA, Multisite

Gary H. Glover

Radiological Sciences Laboratory Center for Advanced MR Technology

Stanford University School of Medicine

Department of Radiology

The consistency problem

- Where are the "emotion regions?"
- Look at coordinates reported in published studies of emotion:

163 studies of emotion

Slide courtesy Tor Wager

Consistency: fMRI of WM

60 PET/fMRI studies <u>TD Wager</u>, 2003 The Scientist, July 19, 2004 v18 i14 p64(1)

Fake Method for Research Impartiality (fMRI): behavioral sciences bid for enhanced status fails short. (Closing Bell) Sam Jaffe.

Full Text: COPYRIGHT 2004 Scientist Inc.

For decades, the behavioral sciences have been at a dramatic disadvantage to the hard sciences. When a biologist hypothesizes that the addition of a particular ligand to a cell will cause a certain gene to turn on and thus produce a certain protein, all she has to do is to introduce the enzyme and then test for the protein. If it's there, she publishes a paper; if it's not, she quietly discards the work.

The psychologist has a much steeper hill to climb. Let's say he's trying to prove his hypothesis that most people who hate their fathers also secretly desire their mothers. Relying on the subject to tell you how he feels has too many obvious landmines that can corrupt the data. How can the psychologist scientifically prove that the connection exists?

Well, now he can. Or at least he can claim that it's a provable hypothesis. Thanks to fMRI (functional magnetic resonance imaging), dozens of studies are pouring out of the humanities aisle of academia claiming that the yellow and red blotches on fMRI scans reveal scientific evidence that can be used to

Outline

- Issues with fMRI reliability
- Reducing confounds
 - HRF
 - calibration of vasoreativity
 - latency
- Physiological noise
- Multicenter studies

fMRI as a biomarker: Motivation

Examples where quantifying activation may be important in drawing inferences about cognition:

- Inter-group comparisons Age, health
- Longitudinal studies normal/abnormal development, therapy
- Multi-center studies fBIRN schizophrenia fMRI trial

Variance in fMRI

- inter-subject variability (probably what you want)
- inter-trial variability (attention, behavior)
- inter-run/session variability (attention, behavior, scanner)
- hemodynamic confounds (calibration)
- physiologic noise (measure and remove)
- small effect size (average)
- task design (control for unrelated effects)
- a lot more...

fMRI Calibration: Motivation

What's the problem?

BOLD Contrast

... BOLD signal is an epiphenomenological indicator of neural processing: many confounds to quantification

- HRF characteristics
 Amplitude
 Latency
 Baseline rCBF
- Physiological noise cardiac pulsation respiration head motion

-> calibration

-> denoising

Activation map derives from thresholding a statistical estimate of BOLD CNR:

$$y_{meas}(t) = \beta_{exp} d_{exp}(t) + \beta_{cntl} d_{cntl}(t) + \beta_0 + \varepsilon(t)$$

$$GLM \Rightarrow \beta' s$$

$$T = \frac{\beta_{exp} - \beta_{cntl}}{\sigma} = \frac{effect}{resid}$$

$$T_{crit} = tpdf(p,df)$$

What does it mean?

Does "activation" = metabolic up-regulation consequent to neural firing? $y_{meas}(t) = \beta d(t) + \varepsilon(t)$

No, not directly... HRF is in the way

$$y_{meas}(t) = \beta(d(t) * h(t)) + \varepsilon(t)$$

General Linear Model

$$y = (\beta_1 d_1 + \beta_2 d_2 + \beta_3 d_3 \dots + \beta_n d_n) * h + \beta_0 + \tilde{n}$$

Hemodynamic Response Function

• Definition: BOLD response to an impulsive stimulus

 may include neuronal and vascular responses
 -> use a cognitively simple task to reduce neuronal component

may be nonlinear
 -> superposition does not hold

M. Thomason

Timing error

Individual differences: HRF

 temporal differences in HRF important in event-related designs

-> measure individual HRFs

Outline

- Issues with fMRI reliability
- Reducing confounds
 - HRF
 - calibration of vasoreativity
 - latency
- Physiological noise
- Multicenter studies

Measurement of HRF

Use short stimulus, long ISI:

HRF: Measure h(t) with 1s task

motor

auditory

Finger tapping & tones at 3Hz, N=5

Glover, NI 1999

Measurement of HRF

• Event related designs are inefficient (T. Liu)

Detection or Estimation?

Jittered (random) designs → maximum estimation efficiency

Block designs → maximum detection power

Liu et al. NI (2001)

Spectral content of h(t)

Fourier Measurement of HRF: (FHRF)

Design has on/off blocks of duration 4s, 6s, 8s, 10s, 12s, 16s, 20s, 30s, 40s, ...4s

Measurement Efficiency

Effect of HRF on Activation

Canonical Gamma variate

Measured Linear HRF

Measurement of HRF

- Can provide characteristic info for each subject
 - requires a task
 - may be difficult to obtain in relevant regions
- Key features are amplitude & latency

 may be obtained without invoking
 a task

Outline

- Issues with fMRI reliability
- Reducing confounds
 - HRF
 - calibration of vasoreativity
 - latency
- Physiological noise
- Multicenter studies

Vasoreactivity

$$\begin{split} &\Delta R2^* \propto rCBV_a [Hb]_a^\beta - rCBV_0 [Hb]_0^\beta \\ &BOLD \propto -TE \cdot \Delta R2 * \\ &rCBV \propto rCBF^\alpha \\ &BOLD_a = M[f^\alpha (\frac{m}{f})^\beta - 1] \\ &m \equiv CMRO2_a / CMRO2_0 \\ &f = rCBF_a / rCBF_0 \end{split}$$

M represents a 'gain' factor related to vascular reactivity

Measuring vasoreactivity

Use a task that does not involve change in metabolism:

- Hypercapnia
 O2 or CO2
 - Breath holding

 $\Delta R2^* \propto rCBV_a [Hb]_a^\beta - rCBV_0 [Hb]_0^\beta$ $BOLD \propto -TE \cdot \Delta R2^*$ $rCBV \propto rCBF^\alpha$ $BOLD_a = M[f^\alpha (\frac{m}{f})^\beta - 1]$ $m = CMRO2_a / CMRO2_0$ $f = rCBF_a / rCBF_0$

BH Task

Block trial: 15s off/on 8 cycles, 4 min, 15 s

BH-induced BOLD signal

Vascular Responsivity: BH

BOLD Signal

 $\Delta R2^* \propto rCBV_a[Hb]_a^\beta - rCBV_0[Hb]_0^\beta$ $BOLD \propto -TE \cdot \Delta R2 *$ $rCBV \propto rCBF^{\alpha}$ $BOLD_a = M[f^{\alpha}(\frac{m}{f})^{\beta} - 1]$ $m \equiv CMRO2_a / CMRO2_0$ $f = rCBF_a / rCBF_0$ $BOLD_{BH} = M[f_{BH}^{\alpha-\beta} - 1]$ $BOLD_{a} = BOLD_{BH} \frac{[f_{a}^{\alpha}(\frac{m}{f_{a}})^{\beta} - 1]}{[f_{BH}^{\alpha-\beta} - 1]}$

Working memory BOLD signal

BH Calibration

BH Calibration: Individual Subs

No calib

Calib

M. Thomason et al., 2007

BH Calibration: Group Activation

 $3.5 \le T \le 10$

M. Thomason et al., 2007

Activation Response

Calibration: SWM

Correlation: WM & BH

SWM

BH

Top: adults Bottom: children

Thomason, et. al, 2005

Outline

- Issues with fMRI reliability
- Reducing confounds
 - HRF
 - calibration of vasoreativity
 - latency
- Physiological noise
- Multicenter studies

Timing error

Auditory WM (N. Gaab)

BH to measure vascular latency

Can a BH task be used to quantify relative differences in vascular latency across the brain?

BH causes activation "everywhere" BH causes a BOLD signal response that is uncoupled from neural activation (CMRO2)

C. Chang (2008)

Latency Measurement

Chang et al., 2008

Latency Map

Impact on default-mode network

subject 1

subject 2

Impact on Granger causality

Before correction

After correction

Chang et al., 2008

Outline

- Issues with fMRI reliability
- Reducing confounds
 - HRF
 - calibration of vasoreativity
 - latency
- Physiological noise
- Multicenter studies

BOLD/Physio noise: sources

- Neuronal activation
- Respiration cycle
- Cardiac cycle
- Respiration volume
 (≈CO₂)
- Heart rate

Physio noise: reduction

- Neuronal activation
- Respiration cycle
- Cardiac cycle
- Respiration volume ($\approx CO_2$)
- Heart rate

RETROICOR

RVHRCOR

Cardiac/Respiratory Noise

Retrospective sorting by cardiac phase

Cardiac/Respiratory Motion Correction

Timeseries in a voxel

after correction

TR 1000ms

Retrospective Corrections

Before K-space I-space

ECG

Resp

Resting State

No retroicor

With retroicor

RETROICOR

No retroicor

With retroicor

Physio noise: reduction

- Neuronal activation
- Respiration cycle
- Cardiac cycle
- Respiration volume ($\approx CO_2$)
- Heart rate

RETROICOR

RVHRCOR

Physio noise: sources

• Variation in respiration volume (per time)

- Air intake is inversely related to the amount of CO_2 in your blood.
 - CO₂ is a vasodilator (causes blood vessels to expand); this decreases vascular resistance, causing blood flow to increase
 - Known to affect BOLD (Wise, 2004)
- Heart rate
 - Affect cerebral blood flow (CBF)/volume; coupled to respiration
 - Not well known!

Physio noise: RVHRCOR

- Method to remove artifacts due to low-frequency respiration (RV) and heart rate (HR) (Chang et al, 2009, Birn et al., 2008)
- Model: RV-related HR-related Voxel time series = $RV \otimes RRF + HR \otimes CRF + (brain signal,etc.)$

Remove these

- Ä denotes convolution.
- RRF and CRF are impulse responses that describe the mapping between RV ←→ BOLD signal, and HR ←→BOLD signal, respectively (just like the hemodynamic response function (HRF) maps between stimuli ←→ BOLD signal)

RVHRCOR: RV

1. Compute RVT from the raw respiration trace

RVHRCOR: RV

2. Convolve RVT with the RRF

correlation = 0.71

RVHRCOR: RV

• Correlation between RVx and each voxel

$RVx \approx CO2$

(after shifting CO₂ forward by about 10s)

- $RV(T) \sim ventilation \sim 1/PaCO_2$
- So, model could be: $RV \rightarrow CO_2$ changes \rightarrow BOLD changes

Chang, 2009

RVHRCOR: HR

- RV:
 - 1. Compute RV from the raw respiration trace
 - 2. Convolve RV with the RRF
- HR:
 - 1. Compute HR from the cardiac/PPG triggers
 - 2. Convolve HR with the CRF

Cardiac response function (CRF)

Variance explained: RVx & HRx

Chang et al., 2009

Impact on activation: SM task

Retroicor only

Retroicor & rvhrcor

T maps: after - before

Impact on WM task

WM Activation increases (corrected - uncorrected) *T=0.1-1.0*

> Chang et. Al (2009)

Impact on resting-state networks

• Decreases "false" positive correlations w/ default-mode

Impact on resting-state networks

Correction can

- reduce spurious
 "connectivity" in DFM
- increase anticorrelated network connectivity

Chang et al., 2009

Chang, 2009
Outline

- Issues with fMRI reliability
- Reducing confounds
 - HRF
 - calibration of vasoreativity
 - latency
- Physiological noise
- Multicenter studies

Multicenter Neuroimaging Studies

- Potential use of MRI/fMRI as a biomarker
 - structural/functional differences may predict disease; large study numbers are necessary for biodiversity
 monitoring drug efficacy or other therapy
- Generate large data sets rapidly
- Access wide or targeted demographic characteristics
- Provide image databases for other analyses

Multicenter MRI

- Desire to pool results across sites equally requires standardization
- Different venders may have incompatible characteristics/ definitions- e.g.
 - pulse sequence contrast in FSPGR vs MPRAGE
 - meaning of BW/echo spacing in EPI imaging -> artifacts/SNR
 - k-space apodization filters -> smoothness/CNR
 - grad distortion correction
 - geometric calibration precision
 - temporal stability

Multicenter MRI

- Need to qualify sites for entry into study
 - characteristics for acceptance
 - geometric accuracy
 - contrast/resolution
 - SNR, CNR, tSNR (SFNR)
 - temporal stability
 - reliability/reproducibility
 - artifacts (ghosts/distortion/eddy current-related, ...)
 - understand sensitivity of scanner characteristics relative to desired measurements
- Set criteria for acceptance
- Need to maintain minimum performance standards
 - develop a QA program

Multicenter MRI

- Decide policy for upgrades (chances virtually 100% for at least one site to upgrade)
 - minor: software only
 - major: hardware & software
- Develop procedures to control for/reduce site effects
- Develop procedures to reduce data acquisition confounds, e.g. hemodynamics in BOLD fMRI- test scientific question

fBIRN

- Goal: Develop methods for pooling fMRI data on schizophrenics at each of 11 centers
 - load manipulation in emotional WM
- Approaches: Reduce intersite/intersubject variability
 - scanner QA
 - measure/calibrate/normalize
 - **BOLD** sensitivity
 - **HRF**/vasoreactivity

Issues in multicenter studies

- Standardization of protocols
- QA
- Site Equalization

Standardization

- Study design
- Acquisition parameters
- Scanner characteristics
- Study procedures
- Analysis pipeline
- Database structures

fMRI Imaging Characteristics

Modest importance:

• Geometric accuracy (since fMRI is low

resolution- e.g. 3.4x3.4x4 mm³)

Highest importance:

- Stability (short/long term)
- BOLD CNR- B1 uniformity (coil choice)
- Susceptibility-induced distortion/dropout (seq. params)
- Ghost/spike noise/other artifacts
- Standardization across vendors

Intersite smoothness differences

Friedman et al. NI (2006)

Why smoothness differences?

k-space reconstruction kernel

• Apodization-lower resolution, higher SNR

Important fMRI Characteristics

fMRI acquisition contrast/smoothness

control parameters: resolution/smoothness (resel != FOV/matrix_size) BW: keep ESP constant across venders slice spacing/skip/orientation fat saturation vs. water excitation readout trajectory (EPI vs. spiral), affects smoothness, artifacts
field strength (affects SNR, CNR, vessels vs. tissue, artifacts)

 affects resolution, motion sensitivity, SNR, num slices/TR

RF Excitation/Slice Select

Spectral-Spatial (default for GE EPI)

> FATSAT (default for Siemens EPI)

Bryon Mueller (UMinn)

Measured Slice Profile

spectral-spatial

fatsat, 256x64, 4 shot, fov 10cm

fat sat

Kun Lu, Tom Liu (UCSD)

Slice select

Important MRI Characteristics

• Dynamic image stability

fMRI & ASL depend on subtraction to compare conditions scanner stability must be << brain noise

Brain noise relative to thermal noise: to set acceptance criteria

$$\sigma^2 = \sigma_0^2 + \sigma_s^2 + \sigma_p^2$$
$$= \sigma_0^2 + (\lambda_s + \lambda_p)S^2(\alpha)$$

G. Krueger (MRM 2000)

Acquire data at 10°, 77°
Calc fraction of scanner/ brain noise vs. thermal noise, using human & phantom scans

> D. Greve (MGH, ISMRM 2008)

Issues in multicenter studies

- Standardization of protocols
- QA
- Site Equalization

QA: What to measure?

- Time series image stability
- Signal to noise ratio
- Signal intensity
- Xmtr/Rcvr Gains
- MRS characteristics
- Eddy currents
- Geometric accuracy

SNR, SFNR

Stability

Site differences

RMS instability, %

QA helped to bring scanners into spec

Issues in multicenter studies

- Standardization of protocols
- QA
- Site Equalization
 - smoothness compensation
 - SFNR compensation

Smoothness/BOLD Differences

Friedman, et al. 2006

Sensitivity vs. Smoothness

5 traveling subjects at 10 sites performing sensorimotor task

Friedman, et al. 2006

Smoothness equalization

- In first-level analysis: Use "smooth to" instead of "smooth by"
- Smooth each site to largest FWHM using Gaussian filter

$$FWHM_{out}^{-2} = FWHM_{meas}^{-2} + FWHM_{filter}^{-2}$$

e.g., AFNI program (thanks to R. Cox)

Friedman, et al. 2006

BOLD Sensitivity: Oddball Task

Novel Tones - Effect Size

Friedman, et al.

fMRI equalization across sites

- Compensation for smoothness
- Compensation by SFNR

fMRI equalization by SFNR

• Measure SFNR using

Original SFNR

- GM Rest
- WM Rest
- GM SMresid
- WM SMresid
- Covary for SFNR

Friedman, et al. 2006

1.5T

Friedman, et al. 2006

fBIRN Emotional Working Memory Task: Emotional Distraction

Stimulus Item

Eight pictures presented during the encode period.

Eight picture pairs presented during the forced choice period.

Mean of Contrast 1 at Four Study Sites

ICC Unadjusted Minus ICC w/BH Calib: Site effects

Functional Contrast 1

G. Brown, et al.

Multisite Studies- items not discussed

- Task design
- Ancillary hardware: projection, sound, button box, physiological, bite bar/stabilization
- Acquisition script
- Data integrity:
 - QA of all scan data
 - automated upload of scan and meta data
 - automated analysis pipeline
- Employ a traveling site coordinator/scannee

Summary

BOLD contrast confounded by

 inter-subject, inter-regional variations in hemodynamic response amplitude/latency
use hypercaphic calibration (e.g. BH) or ASL to reduce vasoreactivity 'gain factor' variance

• respiratory- and cardiovascular-induced BOLD signal changes

- use RETROICOR and RVHRCOR

(must measure card. and resp. functions)

• site differences in stability, SNR, pulse sequence, parameters, study administration

Summary

- Reduction of these confounds can improve confidence in activation maps
- Calibration important in group comparisons, longitudinal studies
- QA, standardization, calibration crucial in multicenter studies

fMRI: Many biomarker applications

Acknowledgements: fBIRN Calibration Working Group Greg Brown @ucsd.edu Lee Friedman @gmail.com Doug Greve @nmr.mgh.harvard.edu Tom Liu @ucsd.edu Bryon Mueller @cmrr.umn.edu Jessie Turner @uci.edu Jim Vovoyodic @duke.edu

My kids

Catie Chang Lara Foland Jason Hsu Christine Law David Ress Moriah Thomason

Caires

NIH: National Center for Research Resources P41-RR009784 U24-RR021992

Nonlinearities- Motor

Measured- average of 5 subjects Calculated using h(t)*rect(T) averaged motor cortex response, 5 subjects alculated average motor response 60 50 16s \8s 41 normalized response 1 c c c signal 2s Normalized 8 30 10 2 5 10 15 20 frame num (1/s) 0 25 5 10 15 time frame 20 25 Ω 2/3s 2s1/3s 15 **8**s **Finger tapping at 4**s 16s3Hz: 1/3s, 2/3s, 1s, 2s, 4s, 8s, 16s Glover, NeuroImage 9:416 (1999)

Effect of HRF on Activation

Linear HRF

Nonlinear HRF

BH Calibration Method

- Use BH task (non-neuronal, no change in CMRO2) to normalize cognitive task
- Reduces signal change related to vasoreactivity
- Should reduce inter-subject variance