Time/Frequency Analysis Methods in Translational Research

Kevin M. Spencer

Research Service, VA Boston Healthcare System Department of Psychiatry, Harvard Medical School

- What is time/frequency (T/F) analysis?
 - ERP vs. EEG analysis
 - T/F methods
 - Survey of applications
- What can T/F analysis tell us about schizophrenia?
- Issues in utilizing T/F analyses
- Future directions

ERP view of the EEG

- Event-related brain potentials (ERPs)
 - Transient patterns of brain activity that reflect various kinds of processes.
 - Derived by averaging signals (time domain analysis).
 - Activity not phase-locked to the event of interest is canceled out.
- Non-ERP portion of signal ("background") is considered "noise".

Classical EEG

- But is the rest of the EEG really noise?
- Ongoing EEG rhythms identified before ERPs.
- Frequency bands
 - Delta (δ): 1-4 Hz
 - Theta (θ): 4-8 Hz
 - Alpha (α): 8-13 Hz (also μ)
 - Beta (β): 13-30 Hz
 - Gamma (γ): 30-100 Hz
 - Also infraslow (<1 Hz), high γ (>100 Hz)
- Analyzed in the frequency domain.
 - Linked to states of arousal/consciousness.
 - Relevant in sleep research, clinical neurology.
 - But not successfully linked to cognitive processes.

Spencer & Polich (1999, Psychophysiol)

Buzsaki & Draguhn (2004, Science)

Modern view of the EEG

- ERP approach highly successful for studying cognition.
- But what about that "background noise"?
 - Some evidence that prestimulus EEG phase/power is correlated with poststimulus ERPs (e.g., Sayers et al., 1974; Jasiukaitis & Hakerem, 1988).
 - Oscillations may play important role in information coding (e.g., Eckhorn et al., 1988; Gray et al., 1989; O'Keefe & Recce, 1994).

Gray et al. (1989, Nature)

0 TIME (ms

T/F analysis

- Measuring event-related changes in the frequency domain.
- "Background" EEG may contain oscillations not strictly phase-locked to stimulus presentation.
 - These oscillations may be related to cognitive processes (just as ERPs).
- T/F methods may also reveal stimuluslocked oscillations not seen in the ERP.

T/F methods

- Band-pass filter the EEG.
 - Computationally inexpensive.
 - OK if frequency band of interest known *a priori*.
 - Otherwise hard to determine the bandwidth of an oscillation.
 - Can't do phase analyses.

Pfurtscheller & da Silva (1999, Clin Neurophysiol)

T/F methods

- Windowed Fast Fourier Transform (FFT), wavelets allow assessment of whole spectrum.
- Windowed FFT
 - Applied in short windows across the EEG epoch.
 - Fixed epoch length not ideal for all oscillation frequencies.
 - T/F tradeoff:
 - Improving time resolution (shorter window) leads to poorer frequency resolution (wider freq bin), & vice versa.
- Wavelet techniques (Morlet)
 - Designed for T/F decomposition, detecting transient signals.
 - T/F tradeoff scales with frequency.
 - Low frequencies have longer wavelets, high frequencies have shorter wavelets.

Tallon-Baudry & Bertrand (1999, Trends Cogn Sci)

What can T/F methods detect?

- 2 basic kinds of activity:
 - Evoked
 - Phase-locked to event of interest (e.g., stimulus onset).
 - Induced
 - Event-related but not strictly phase-locked to event.
- Both transients (ERPs) and oscillations are detected.
 - Hard to tell apart.

Tallon-Baudry & Bertrand (1999, TICS)

Event-related spectral measures

- Evoked power
 - Computed from average ERP.
 - Non-stimulus locked activity is averaged out.
 - Includes ERPs, stimuluslocked oscillations.
- Total power
 - Average of single-trial power spectra.
 - Non-stimulus locked activity is preserved.
 - Includes induced and evoked responses.
- Phase synchronization

Phase synchronization

- Many names for same measure:
 - Phase locking factor (PLF)
 - Phase locking value (PLV)
 - Inter-trial coherence (ITC)
- Amplitude-independent
- Based on variance of phase across trials.
 - 1 minus circular phase variance
 - 0 = random distribution
 - 1 = perfect synchronization

Functional connectivity

Phase

synchronization can be computed between EEG/MEG sensors or brain sources.

 Computed on phase lags between sensors/sources.

(ZH) 25 Frequency (std. dev. above baseline mean 0 200 300 100 Time (ms) B Frequency (Hz) 10 std. dev. above 100 200 300 baseline mean Time (ms) C (12) C 0 100 200 300 baseline mean Time (ms) Currents 01 D malized 0.5 0 100 200 300 Time (ms)

Bar et al. (2006, PNAS)

Cross-frequency interactions

- Rhythms are organized hierarchically.
 - Not just hippocampus but neocortex too.
- Low frequency oscillations (δ, θ) can modulate the power/phase of higher-frequency oscillations (β, γ).

State dependence of cognitive processes

 Power and phase of pre-stimulus oscillations can influence perception.

Overview

- What is time/frequency (T/F) analysis?
- What can T/F analysis tell us about schizophrenia?
 - Why study oscillations in schizophrenia?
 - Survey of $\boldsymbol{\gamma}$ findings
 - Pharmacological effects
- Issues in utilizing T/F analyses
- Questions and future directions

Oscillations and Schizophrenia

- Bleuler (1911)
 - "splitting of the psychic functions"
- Modern view
 - Psychological dis-integration due to failure to integrate neural circuits.
 - Widespread gray matter reductions, micro- and macroscopic connectivity abnormalities.
- Why study oscillations in schizophrenia?
 - Oscillations represent synchronized neural activity.
 - Metaphorical similarity: psychological/neurophysiological disintegration
 - Basic mechanisms of some oscillations known.
 - Link to neural circuit abnormalities, animal models.

γ oscillations

- Hebb: *cell assemblies* are basic unit of information processing in brain.
- Singer et al.: precise (ms) synchronization may link neurons into cell assemblies.
 - Mediated by γ oscillations (30-100 Hz).
 - perception, attention, memory, motor functions
- Prediction: γ oscillations abnormal in SZ.

Gray et al. (1989, Nature)

γ mechanisms

- γ synchronization
 - Pyramidal cells (PCs) excite inhibitory interneurons.
 - Interneurons phase output of PCs and each other.
 - Oscillation emerges from PC-interneuron interaction.
- Parvalbumin-expressing (PV+) inhibitory interneurons are critical element.
 - Fast-spiking, target perisomatic region of PCs & other interneurons.

SZ neural circuitry abnormalities

- Pyramidal cells
 - reduced somal size
 - reduced spine density
 - → reduced synaptic connectivity
- PV+ inhibitory interneurons
 - reduced GABA synthesis, reuptake
- Reduced synaptic connectivity, GABA synthesis can cause γ deficits.
 - Link basic and clinical findings.
 - Suggest targets for translational approaches (e.g., Lewis et al., 2008, *Am J Psychiatry*).

Lewis & Lieberman (2000, Neuron)

Survey of SZ oscillation studies

Sensory

- Evoked and steady-state responses (SSRs)
- Perceptual
 - Gestalt perception
- Cognitive
 - Working memory
- Motor
 - Corollary discharge

Sensory-evoked y oscillations

- Early auditory-evoked γ
 ~50 ms, 30-50 Hz
- Early visual-evoked γ
 ~100 ms, 25-40 Hz
- Easy to obtain from oddball tasks.
- Auditory γ: mixed evidence for deficits
 - 3/6 studies
- Visual γ: 2/2 studies show deficits

Spencer et al. (2008, Biol Psychiatry)

Auditory SSR

- Passive listening
- 20, 30, 40 Hz click trains
- ASSR reduced in SZ in γ range.
- Deficit found in:
 - Chronic SZ
 - 1st episode SZ
 - Unaffected siblings of SZ
 - Early onset psychosis
 - Bipolar disorder (1st episode & chronic)
 - State dependent (manic, not euthymic)
- Robust deficit, no negative findings reported in ~8 studies.

Kwon et al. (1999, Arch Gen Psychiatry)

Spencer et al. (2008, Biol Psychiatry)

Visual perception studies

- Response-locked γ (RLO) elicited by Gestalt stimuli in controls.
- Frequency shifted to β range in SZ.
- Phase locking *positively* correlated w/ visual hallucinations, disorganization.

Visual perception studies

- Gestalt stimuli elicited inter-regional β phase synchronization.
- Local γ power did not differ between conditions, subject groups.
- Reduced β inter-regional synchronization in SZ.

Uhlhaas et al. (2006, *J Neurosci*)

Working memory

- Synaptic connectivity and interneuron abnormalities found in prefrontal regions involved in WM.
- WM processes may involve γ oscillations.
- Delay-period γ deficits in 2/2 studies.
- WM α related to suppression of irrelevant items.
 - No α deficits found.
- Also encoding and retrieval γ deficits.

₹ 70 € 60 ℃ 50 40 **De** 30 ي 20 SŽ¹⁰⁰⁰ 1000 1500 Time (msec) 0 1500 Time (msec) 1500 500 1000 1500 ΗC[°] Time (msec) (**₽**) 70 60 50 SO 40 30 <mark>ال</mark> 20 0 500 1000 1500 0 500 1000 1500 0 500 1000 Time (msec) Time (msec) Time (msec)

Haenschel et al. (2009, J Neurosci)

Cho et al. (2006, PNAS)

Motor – corollary discharge

- Self-paced button presses.
- Controls showed a putative corollary discharge-related γ oscillation preceding the button press.
- Pre-press γ was reduced in SZ.
- In SZ, pre-press β was negatively correlated with avolition/apathy ratings.

Summary: SZ y abnormalities

- γ oscillation abnormalities have been found across a variety of domains in SZ.
- Generally power/phase synchronization is reduced in SZ.
 - Consistent with synaptic connectivity, GABA deficits.
- But some positive correlations w/ symptoms have been reported.
 - Consistent with NMDA receptor hypofunction (e.g, Pinault, 2008, *Biol Psychiatry*).

Pharmacological effects

- ASSR in SZ
 - Hong et al. (2004, Schizophr Res)
 - SZ on atypical antipsychotics had larger 40 Hz ASSRs than controls.
 - SZ on conventional antipsychotics had reduced 40 Hz ASSRs.
 - But this medication effect not seen in large sample of Light et al. (2006, *Biol Psychiatry*).
- Early auditory γ in healthy individuals
 - Ahveninen et al. (1999, Neurosci Lett)
 - Increased by scopolomine (muscarinic agonist).
 - Consistent with muscarinic & cholinergic enhancement of γ in cat visual cortex (Rodriguez et al., 2004, *J Neurosci*).
 - Jääskeläinen et al. (1999, Neurosci Lett)
 - Decreased by benzodiazepine (GABA_A agonist).
 - Jääskeläinen et al. (2000, Psychopharmacol)
 - Decreased by ethanol (GABA_A agonist).
- ASSR and cannabis use
 - Skosnik et al. (2006, Am J Psychiatry)
 - Cannabis users vs. naïve subjects had decreased 20 Hz ASSR (& 40 Hz harmonic), but normal 40 Hz ASSR.

Overview

- What is time/frequency (T/F) analysis?
- What can T/F analysis tell us about schizophrenia?
- Issues in utilizing T/F analyses
 - Test/re-test reliability
 - Planning experiment
 - Acquiring, analyzing data
 - Functional connectivity confounds
- Questions and future directions

Test/re-test reliability

- Very little data to date.
- Frund et al. (2007, Clin Neurophysiol)
 - 12 young, healthy subjects.
 - 2 week interval.
 - Early visual γ oscillation.
 - High reliability:
 - Magnitude & peak frequency for evoked power and phase locking > 0.78.

Planning the experiment

- Have adequate # trials for good signal-to-noise ratio (SNR).
 - > 60 per condition (?), the more the better.
 - Coherence values may be overestimated for small trial #s.
- Equal numbers of trials per condition to match SNR (if possible).
- Epoch length should take into account frequency range of interest.
 - Baseline and post-stimulus periods should each be at least 1 cycle duration of the lowest frequency.
 - Just because your software gives you low frequencies doesn't mean they're valid.

Acquiring the data

- Very important to acquire clean data

 More important than for ERPs can't filter out noise.
- Avoid line noise, monitor refresh artifact.
- Have subjects relax to reduce muscle artifact.
- Set amplifier filter to widest reasonable range (e.g, DC to 100 Hz or higher).
- Sample at fast rate
 - Nyquist frequency: highest measurable frequency is ½ the sampling rate.
 - But phase resolution better with higher sampling rate.
- Monitor eye movements for microsaccades?

Analyzing the data

- Choose frequency resolution suitable for your purposes.
 - Analysis of frequency variability requires high resolution (1 Hz steps).
- Baseline correction?
 - 0 has real meaning for power, phase locking.
 - But necessary for examining true event-related effects.
 - Subtraction, percentage, Zscore?
- Parametric vs. nonparametric statistics?
 - Phase locking values probably not normally distributed (0-1).
 - Parametrics may be OK in practice.

- Statistical mapping
 - How to correct for multiple comparisons in T/F space?
 - Resampling methods (bootstrapping, permutation)

Functional connectivity confounds

- Volume conduction
 - Potentials propagate throughout head.
 - Can lead to false synchronization.
- Common reference
 - Synchronization effects may be due to changes at the reference electrode(s).
 - No such thing as an inactive site.
- Nunez, Guevara et al. (2004, Neuroinformatics), Sazonov et al. (2009, Biol Cybern), others
- Solutions
 - Statistical correction?
 - Current density, MEG: reference-free, attenuate volume conduction.
 - Source modeling: ideal, but difficult at present.

Where do we go from here?

- To be useful as biomarkers, SZ oscillation abnormalities should be correlated with symptoms and/or cognitive deficits.
- Understanding the underlying causes of particular abnormalities would enhance their utility as biomarkers.
 - Animal and computational models of particular oscillations need to be developed.

Future directions

- Need to map oscillation (and ERP) abnormalities onto anatomy.
 - How do anatomical and physiological deficits correlate?
- Integrate multiple methodologies to assess neural circuit integrity.
 - Source localized EEG/MEG, fMRI, TMS, MRS, and MRI/DTI measures of anatomy.

Muthukumaraswamy et al. (2009, PNAS)

Thanks for your attention.

Synaptic Connectivity

Interneuron GABA Output

Interneuron NMDA Input

Spencer (2009, Front Hum Neurosci)