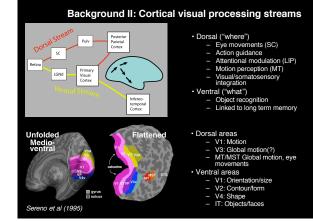
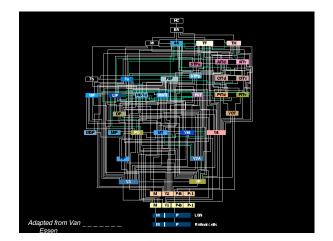

[±]UCL


Perceptual Processing Deficits Associated with Schizophrenia


Steven Dakin UCL Institute of Ophthalmology University College London

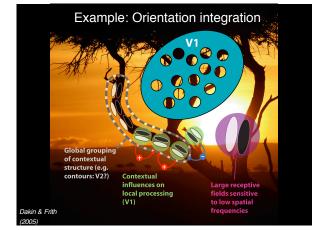

Overview

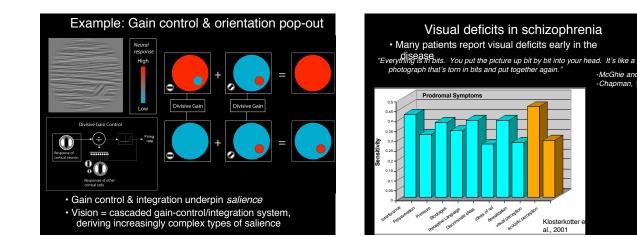
- Background: Structure of the human visual system
- Key functional concepts
 - Gain control
 - Integration
- Processing deficits for visual attributes
 - Contrast
 - Form
 - Motion
- Relevance to other perceptual systems
 - Eye movements and auditory perception

- Receptive fields (RFs)
 When visual stimuli fall in a region of space known as the receptive field, they induce neurons to fire
 Neurons signal change
 Sensitivity/complexity is refined from one visual area to next
 RFs increase in size as one passes along the visual hierarchy

Background IV: Contextual effects

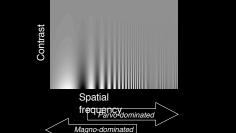
(Kwon et al 1992

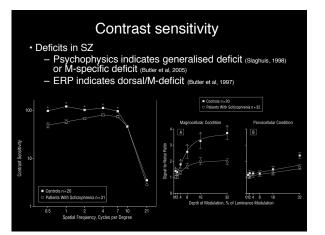

Contrast

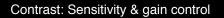

- Neurons do not operate in isolation (e.g. suppression)
- Gain control

 - Neurons have limited dynamic range
 Various ways to be influenced by neighbours to keep signaling useful change ("salience")
 Effected by: intracellular, direct connectivity (excitation/inhibition), feedback.

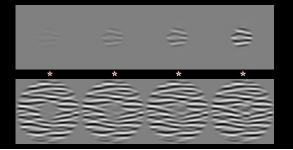
 - NMDA has central role
- Integration/binding (Gestalt perception)
 Cells in later visual areas get bigger and more complex by *integrating* small (local) features in bigger (global) features (e.g. form, motion...)

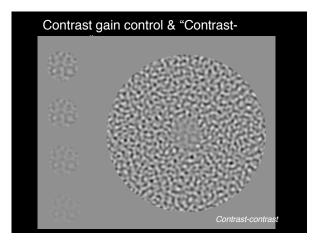

 - Effected by: direct connectivity (excitation/inhibition, sychronization), feedback.
- Attentional effects not considered here

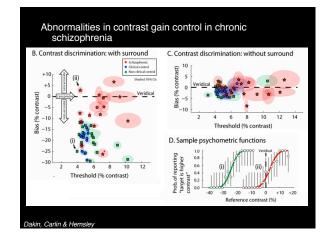


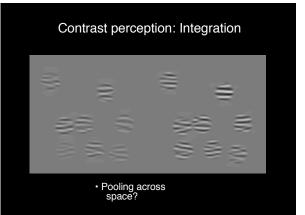

Visual processing of Contrast

- · Fundamental visual property with standard measures
- Subject to gain control & integration
- · Dependent on size (spatial frequency)

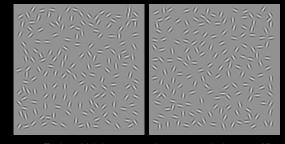





-McGhie and -Chapman, 1961



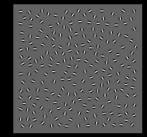
- Contrast is subject to (e.g. centre-surround) gain control & integration
- · Induces changes in sensitivity and appearance

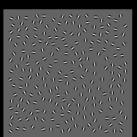


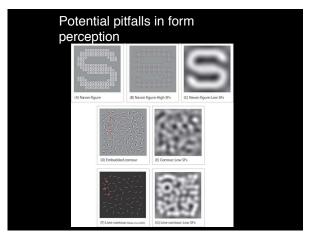
Visual Processing of Form/Gestalt

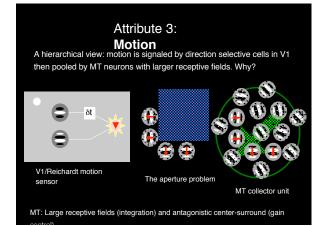
- Integration/binding
 Emphasised by several theories of schizophrenia
 Less influence of global on local (Place & Gilmore, 1980; Rief,
 1991)
- Deficits associated with SZ
 - Silverstein et al (2000) report poor contour integration in SZ

 - SZ
 Simpler Gestalt tasks unaffected (Chey & Holzman, 1997) but role of top-down cannot be ruled out (John & Hemsley, 1992)
 May be attributable to long-range disruption in synchronization of neural activity (e.g. reduced phase synchrony in β band; Unihaas et al 2006, Iower frequency phase-locking (Spencer et al. 2003,2004) +-correlated with hallucination; γ-band findings are equivolcal)

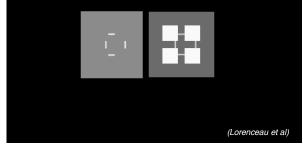

"Path" paradigm

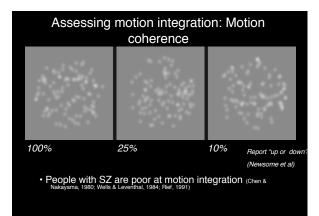


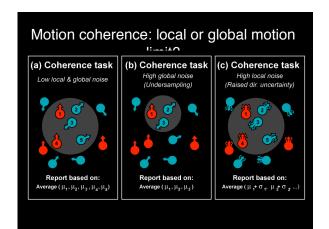

Task: "which image contains an extended contour?"

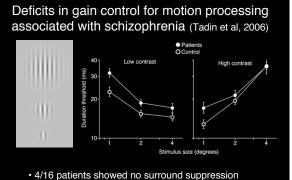

Field, Hayes & Hess (1993). Kovács & Julesz (1993) & Moulde

Gain-control likely plays a role in contour integration

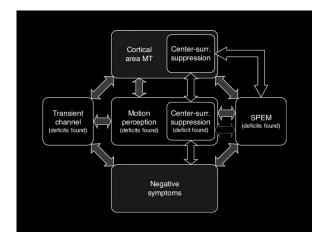







Varieties of global motion integration

Integration can have a profound influence on perception



Poorest performance with severe negative symptoms

Summary		√/ × Co	\checkmark / × Consistent/inconsistent with SZ			
		Contrast	defi Form	cit Motion		
	Sensitivity (local)	\checkmark	✓	~		
	Gain control (Appearance)	√	~	?		
	Gain control (Sensitivity)	~	?	~		
	Integration (global)	?	~	~		
	Mag. v. Par.	~	?	~		
	Image-able	\checkmark	\checkmark	~		
	Superior perf.	\checkmark	?	\checkmark		

Practicalities

- Testing is straightforward (cards/computers)
- Behavioural tests can elicit superior performance ruling out attentional/top-down effects
- Underlying neural circuitry is increasingly clear e.g. gain control
- Imaging visual areas is straightforward (large areas located on the cortical surface)
- Drug models (e.g. ketamine) and animal models (macaque) are established

Conclusions

- Consistent deficits in low-level/bottom-up visual processing are observed in schizophrenia
- Gain control & integration are a common thread running through various deficits (including figure-ground and eye-movement control). Candidate constructs?
- Magno deficit is also clear; may provide physiological substrate for gain control
 Such bottom-up phenomena may explain effects previously attributed to top-down factors