

The Big Picture

- · Need (fuzzy) borders between attention, working memory, and executive control - Avoid duplication of effort in task development
- Attention \rightarrow selection of sources of information - What to perceive? What to remember? What to act upon?
- Executive control \rightarrow selection of rules (S/R mappings) - Which set of rules is currently appropriate?
- Working memory \rightarrow dynamic storage of information and rules

Attention as Input Selection

- William James (1890)-Everyone knows what attention is.
 - It is the taking possession by the mind,
 - in clear and vivid form, of one out of what seem several simultaneously possible objects or trains of thought. Focalization, concentration, of
 - consciousness are of its essence. It implies withdrawal from some things in order to deal effectively with others...

Attention as Input Selection

- Attention is a process - Not a resource, a module, etc.
- It selects some objects for perception, memory storage, and action
 - Selection occurs within distinct cognitive subsystems Attention acts by modulating these systems
- Information that is not selected is lost (or delayed) - Not perceived, not remembered, not acted upon
- Used under conditions of competition Competition makes selection necessary
- Hard to select in the absence of competition A demonstration...

Rule Selection

- Example: A-X CPT (Cohen et al 1999 version)
 Respond to X when preceded by A (70% of trials)
 - X rarely follows anything but A
 - Response to X becomes automatic
 - Need to exert control (attention) to avoid responding to B-X
 - SC patients are found to make many false alarms to B-X
- A and B signal different rules for processing X
 - A: Respond when X is perceived
 - B: Don't respond when X is perceived
- Because A-X is common and B-X is rare, the A rule has a high activation level
- When B is presented, it is difficult for the B rule to compete with the A rule

Rule Selection

• Example: WCST

- Learn to sort cards according to a rule
- Rule switches at some point
- Need to suppress old rule and learn/activate new rule
- · Example: Task switching
- Frequent changes in rules
- Current rule competes with previous rule
- Current rule is stored in working memory, which must be frequently updated
- Rule-selection tasks, not input-selection tasks, are the focus of most research on executive control
 - Most basic scientists who call themselves "attention researchers" focus primarily on input-selection tasks

The Big Picture

- Attention → selection of sources of information
 Selection among competing inputs to a processing system
- Executive control → selection of rules (S/R mappings)
 Selection among competing sets rules that could be followed by a processing system
- Working memory → storage of selected inputs and selected rules

Control vs. Implementation

- Efficiency of input selection depends on two factors
- <u>Control of Attention</u>- Finding the right input source
 - Is the spotlight shining on the right object?
- Related to the "attention shifting" construct
 Depends on: Activation of appropriate rule Precision and stability of rule representation
 - Quality of perceptual cues that guide attention
- Implementation of Selection- Boosting selected item and inhibiting competitors
 - How bright is the spotlight?
 - Related to the "selection under distraction" construct
 - Depends on strength and precision of excitatory and inhibitory connections between representations

- Hypothesis: SC involves a deficit in control but not implementation
- Challenging to separately measure control and implementation
 - Input selection tasks always involve both
- Measure implementation by making control trivial
 Salient sensory information is available to guide attention
 Finding: Implementation appears normal in SC patients
- Measure control by varying difficulty of control
 - Presence vs. absence of salient distractors
 - Finding: Control appears to be impaired in SC patients

Control: Singleton Capture

- Shifting to a target in the presence of a salient distractor
 - Task: Report orientation of line inside circle
 - One item is black on 50% of trials (never the target)
 - Pits appropriate rule against bias toward salience

 Finding: Patients are dramatically slowed when the black item is present

Gold et al. (in prep.)

The Big Picture

- · Proposed division of labor
 - Attention \rightarrow selection of sources of information
 - Executive control \rightarrow selection of rules
- Working memory \rightarrow storage of selected inputs and rules
- Performance of almost any task involves interactions between these systems
 - And perceptual and motor systems
- Input selection involves two components - Control of attention: Probably impaired in SC
 - Implementation of selection: Probably not impaired in SC
- Need tasks that isolate control of attention
- Need new research that links control of input
- selection to general theories of executive control

