Center for Neuroscience UNIVERSITY OF CALIFORNIA AT DAVIS Long-term (episodic) memory: Functional and neuroanatomical considerations

Charan Ranganath

Center for Neuroscience and Dept of Psychology, UC Davis Visit us on the web at: http://DynamicMemoryLab.org

Research supported by NIMH grant 1R01MH68721

Why assess long-term memory?

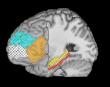
- LTM is one of the most severely impaired cognitive functions in schizophrenia
- LTM impairments are not explained by
 - education or gende
 - medication status
- duration or severity of illness
 Traditional neuroleptic medications do not ameliorate LTM impairment
- Degree of LTM impairment strongly predicts functional outcome Relates directly to other cognitive functions:
- Planning for the future
 Prospective memory (e.g., remember to take your medicine)

Courtesy Dan Ragland

CNTRICS Survey: Candidate constructs in long-term memory

- Encoding (including item and relational, binding, or associative encoding)
- · Retrieval (item specific or associative/relational)
- Source Memory
- Strategy Generation and Application
- Recollection
- Familiarity
- Semantic Memory/Representations
- Semantic Priming
- Reinforcement based learning

Overview


Clarification of CNTRICS constructs

Part I:

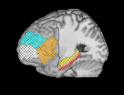
- Theoretical foundations
- Interrelationships

Part II:

- Potential neural substrates - Lateral Prefrontal Cortex (PFC)
- Medial Temporal Lobes (MTL)

Overview

Clarification of CNTRICS constructs


Part I:

Theoretical foundations

Interrelationships

- Potential neural substrates

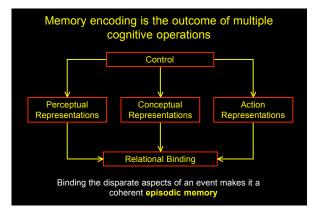
 Lateral Prefrontal Cortex (PFC)
 Medial Temporal Lobes (MTL)

The BIG picture

- Long-term memory encoding and retrieval are <u>not</u> analagous to a camcorder or a computer hard disk
- What you remember depends collectively on - what happens during encoding processing
 - the available cues and processes that are engaged during retrieval

The BIG picture

Life cycle of a memory


Forgetting

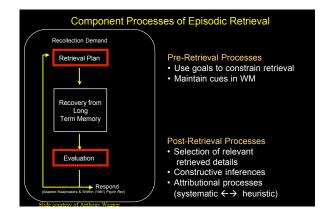
- <u>Transfer appropriate processing:</u> relationship between type of processing at encoding, and the type of retrieval test
- Encoding specificity
- relationship between the information that is encoded and the nature of <u>retrieval cues.</u>
- <u>Context dependency</u>
 - even the study context can act as a retrieval cue.

Long-term memory encoding

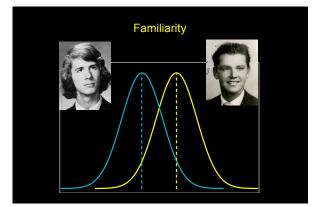
 The relationship between how information is processed and the degree to which this processing impacts learning is called <u>encoding</u> <image>

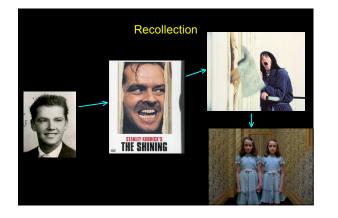
Memory Retrieval

- The set of processes involved in recovering/reconstructing a memory for a prior event
- <u>Retrieval Cue</u>: a piece of information that can guide retrieval of a memory of a prior event
- Different types of tests offer different types of retrieval cues


Free Recall, Cued Recall & Recognition

Cued Recall W	hat items were on the list? hat item was paired with <i>window</i> ? (or) hat item began with <i>rea</i> ?
Yes/No Recognit Forced-choice Re Remember/Know	ecognition Which was on the list, <i>reason</i> or <i>tree</i> ?
<u>Test</u> Free Recall Cued Recall Y/N Recognitio	
F-c Recognition	


Retrieval Cues


- A piece of information that elicits retrieval of a memory of a prior event
- Different types of tests offer different types of retrieval cues

Dual-process models of recognition

Two processes are used to recognize items

- Familiarity
 A graded change in the "strength" of an item with repetition
 Similar to SDT or "Global Matching" models
 Does not specify context of an event
 Influence is relatively fast

 - Recollection "Pattern completion" process

- Supports source memory
 Also supports recall and accurate associative memory
- Influence requires more time

See Diana et al. <u>PBR</u> (2006) Yonelinas (2002) <u>JML;</u> Norman & O'Reilly (2003) <u>Psych Rev.</u>

Evidence for dual process models

- 1. Differences between recall and recognition
- 2. Remember-Know Method
- 3. Item vs. Source Memory
- 4. Process-Dissociation Procedure
- 5. Differential electrophysiological correlates

Source Monitoring Framework (SMF)

Johnson et al. (1993)

- "...people do not typically directly retrieve an abstract tag or label that specifies a memory's source ...rather, activated memory records are evaluated and attributed to particular sources through decision processes performed during remembering"
- Different memories have different characteristics
 Records of thoughts, feelings, actions, sensations
- Accurate memory attributions depend on:
- Availability of specific information about previous event
- Monitoring processes to weight specific information when making a decision

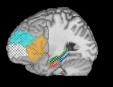
Source Monitoring Framework (SMF)

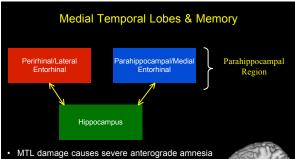
Johnson et al. (1993)

- Familiarity vs. Recollection
- Recollecting an event relies on the availability of specific information (sights, sounds, etc.)
- Familiarity is a nonspecific kind of information that generally does not specify source
- Thus, familiarity is more susceptible to misattribution errors ("false fame effect")...

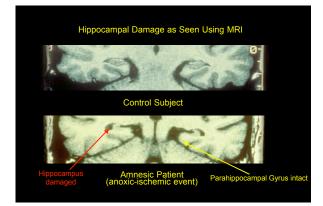
Overview

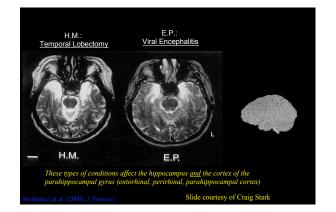
Clarification of CNTRICS constructs


Part I:

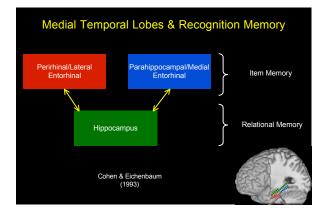

- Theoretical foundations
- Interrelationships

Part II:


- Potential neural substrates

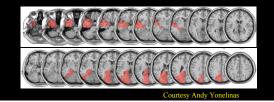

 Lateral Prefrontal Cortex (PFC)
- Medial Temporal Lobes (MTL)

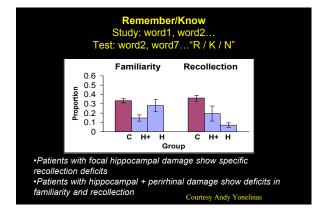
Involved in forming representations that help bind episodic memories

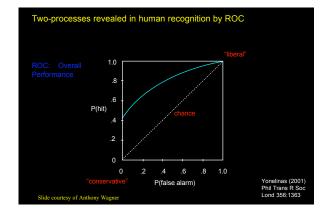


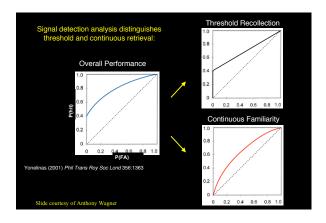
Theories/Models/Ideas about MTL function

- Animal models: Spatial memory (O'Keefe & Nadel)

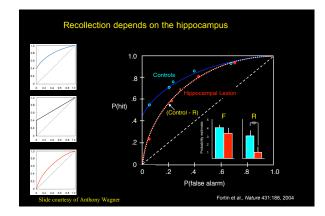

Models for human amnesia:

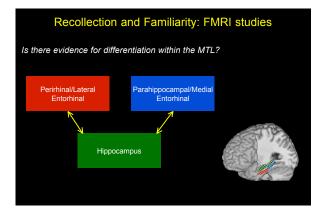

- Declarative memory (Squire)
- Relational Memory (Cohen and Eichenbaum)
- Episodic memory (Tulving)
- Recollective Memory (Aggleton & Brown)
- Rapid, complex associations (McClelland, McNaughton & O'Reilly)




Yonelinas et al. (2002): H vs. H+ Lesions

- Patients (3-5/group + age-matched controls)
 Hippocampal Lesions (H): hypoxic-ischemic (cardiac arrest)
 Hippocampal and parahippocampal Lesions (H+): Left temporal lobectomy, and left posterior cerebral artery infarct (stroke) patients


Neuropsychological studies


Amnesia literature

- Hippocampal amnesic patients (e.g., mild hypoxia) can show impaired recollection with normal familiarity
- e.g., Yonelinas et al. (2000), Aggleton et al. (2005), Holdstock et al. (2005)
 ...but some studies report impaired familiarity and recollection
 e.g., Manns & Squire (2000), Cipolotti et al. (2006), Wais et al. (2006)

- Animal neuropsychology

 Mixed results, but mapping b/w tasks and processes is unclear
- Fortin et al. (2004):
- Analysis of recognition ROC curves in rats using dual-process model
 Focal hippocampal lesions in rats impaired recollection but not familiarity

Recollection and Familiarity: FMRI studies

Is there evidence for differentiation within the MTL?

Eichenbaum, Yonelinas, & Ranganath (in press) Ann. Rev. Neurosci.

- · Reviewed results from contrasts that reported neural correlates of Recollection and/or Familiarity in the MTL
- Recollection:
 - Remember > Know
 - Recognized items w/ source > Recognized w/o source
- Familiarity:
 - Know > Forgotten
 - Recognized w/o source > Forgotten
 Correlations with recognition confidence

Recollection and Familiarity: FMRI studies

Is there evidence for differentiation within the MTL?

Eichenbaum, Yonelinas, & Ranganath (in press) Ann. Rev. Neurosci.

- · Compared frequency of activations reported in
 - Hippocampus (Hipp)
 - Posterior Parahippocampal Gyrus (PPHG)
 - Anterior Parahippocampal Gyrus (APHG)

Study	Method	Materials	Stage	Contrast	HIPP	PPHG	APHG
Davachi et al., 2003	SC/SI/Miss	words	Encoding	SC=SI > Miss	None	None	L
Gold et al., 2006	SC/SI/Miss	words	Encoding	SC=SI > Miss	L	В	R
Henson et al., 1999	RKN	words	Encoding	$K \ge R$	None	None	R
Kensinger & Schaeter, 2006	SC/SI/Miss	emotional pictures	Encoding	SI > Miss	None	Noze	L
Kensinger & Schaeter, 2006	SC/SI/Miss	emotional words	Encoding	SI > Miss	None	None	L
Kirwan & Stark, 2004	Assoc. rec.	face-name	Encoding	intact recognized > intact called new	None	R	R
Ranganath et al., 2003	SC/SI/1-6	words	Encoding	1-4 linear increase	None	None	L
Uncapher & Rugg, 2005	RKN	words	Encoding	$K \ge Miss$	None	None	R
Uncapher et al., 2006	SC/SI/Miss	words + 2 sources	Encoding	All recognized > forgotten	None	None	L
Daselaar et al., 2006	1-6 conf	words	Retrieval	1-6 linear decrease	L	None	L
Eldridge et al., 2005	RKN	picture-word	Retrieval	RK <miss=cr< td=""><td>R</td><td>R</td><td>None</td></miss=cr<>	R	R	None
Gonsalves et al., 2005	RKN	faces	Retrieval	R <k<miss<cr< td=""><td>None</td><td>L</td><td>в</td></k<miss<cr<>	None	L	в
Montaldi et al., 2005	1-4R	scenes	Retrieval	1-4 linear decrease	None	None	В
Weis et al., 2004	SC/SI/Miss	scenes	Retrieval	SI <miss< td=""><td>None</td><td>None</td><td>R</td></miss<>	None	None	R
Yonelinas et al., 2005	1-4R	words	Retrieval	1-4 linear decrease	в	None	None
				Reported Activations	4	4	13
				Total contrasts	15	15	15
				%	27%	27%	87%

				Activations	17/20	11/20	3/20
Yonelinas et al., 2005	1-4R	words	Retrieval	R > 4	В	L	None
Woodruff et al., 2005	RKN	words	Retrieval	$R \ge K$	R	R	None
Wheeler & Buckner, 2004	RKN	words	Retrieval	$R \ge K$	в	None	None
Weis et al., 2004	SC/SI/Miss	scenes	Retrieval	SC > SI	в	None	None
Sharot et al., 2004	RKN	scenes	Retrieval	R > K	None	R	None
Montaldi et al., 2006	1-4R	scenes	Retrieval	R > all else	в	None	None
Kahn et al., 2004	SC/SI/Miss	words	Retrieval	SC > SI	None	В	None
Eldridge et al., 2000	RKN	words	Retrieval	R > K	в	R	None
Dolcos et al., 2005	RKN	emotional pictures	Re	$R \ge K$	в	в	в
Dolcos et al., 2005	RKN	neutral pictures	Re	$R \ge K$	в	R	None
Daselaar et al., 2006	1-6 conf	words	Retrieval	6 > 1-5	L.	None	None
Cansino et al., 2002	SC/SI/Miss	words	Retrieval	$SC \ge SI$	R	L	None
Staresina & Davachi, 2006	Recall+Source	Words + colors	Encoding	Recall > SC > SI > Miss	В	None	1.º
Uncapher et al., 2006	SC/SI/Miss	Words + 2 sources	Encoding	Both SC > 1 or 2 SI	R	None	None
Uncapher & Rugg, 2005	RKN	words	Encoding	$R \ge K$	L	None	None
Ranganath et al., 2003	SC/SI/1-6	words	Encoding	SC > SI	R	R	None
Kensinger & Schacter, 2006	SC/SI/Miss	emotional words	Encoding	SC > SI	L	None	None
Kensinger & Schacter, 2006	SC/SI/Miss	emotional pictures	Encoding	SC > SI	L	R	None
Gold et al., 2006	SC/SI/Miss	words	Encoding	SC > SI	None	None	
Davachi et al., 2003	SC/SI/Miss	words	Encoding	SC > SI	В	L	None
Study	Method	Materials	Stage	Contrast	HIPP	PPHG	APHG

between items							
Study	Method	Materials	Stage				
Jackson & Schaeter, 2004	Assoc. rec.	word pairs	Encoding				
Kirwan & Stark, 2004	Assoc. rec.	face-name	Encoding				
Eldridge et al., 2005*	RKN	picture-word	Retrieval				
Fenker et al., 2005	RKN	word-fearful face	Retrieval				

.

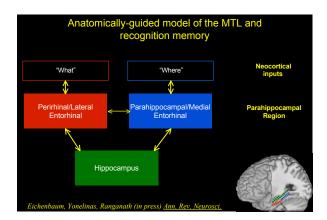
FMRI Studies: Recollection of associations between items

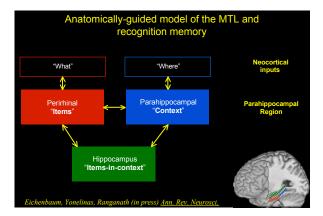
Study	Method	Materials	Stage	Contrast	HIPP	PPHG	APHG
Jackson & Schaeter, 2004	Assoc. rec.	word pairs	Encoding	Intact hit > intact called recombined	L	None	L
Kirwan & Stark, 2004	Assoc. rec.	face-name	Encoding	Intact hit> intact called recombined	R	R	None
Eldridge et al., 2005*	RKN	picture-word	Retrieval	R > K		None	В
Fenker et al., 2005	RKN	word-fearful face	Retrieval	R > K	R	None	R
Fenker et al., 2005	RKN	word-neutral face	Retrieval	R > K	в	L	None
Kirwan & Stark, 2004	Assoc. rec.	face-name	Retrieval	Intact hit > intact called recombined	R	R	В
				Reported Activations	6	3	4
				Total contrasts	6	6	6
				%	100%	50%	67%

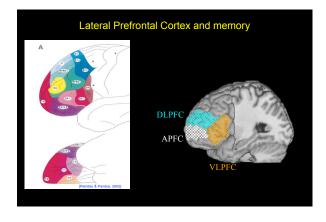
Recollection and Familiarity: FMRI studies

Is there evidence for differentiation within the MTL? Yes

- Hippocampal activation is
- Consistently higher for recollected than non-recollected items
- Generally insensitive to changes in familiarity strength.
- Similar results in the PPHG
- Results consistent across
- Encoding and retrieval
- Different measurement techniques
- Different stimulus types.




Recollection and Familiarity: FMRI studies


Is there evidence for differentiation within the MTL? Yes

- APHG activation is
- Consistently correlated with familiarity
- Rarely correlated with recollection of items
- May be correlated with recollection of terms are associated with other items
- Results consistent across different measurement techniques and different stimulus types.

PFC and Memory: Lesion Studies

- Patients with PFC Lesions—most common complaint is "memory problems"
- In fact, research suggest memory impairment depends on how material is studied and tested.
- Orbital prefrontal patients may have specific memory deficits

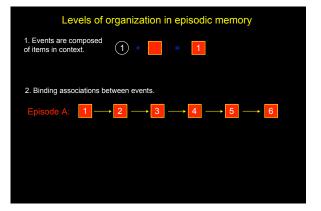
Summary of Lesion Results

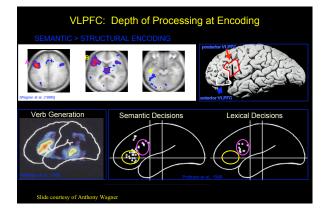
PFC patients show...

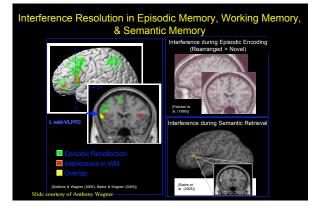
- Near-normal memory...
 - ...when given structured encoding tasks
 - ...when given retrieval tests that place minimal demands on effortful processing (e.g., forced choice recognition)
- Impaired memory...
 - ...when forced to initiate strategies during encoding
 - ...when given retrieval tests that require more effortful processing (e.g., free recall, source memory)

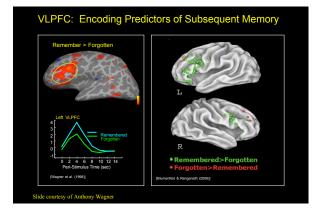
Improving memory in PFC patients

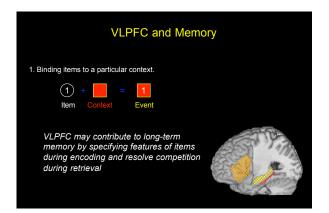
- If patients with PFC patients have problems initiating strategies to encode and retrieve information, can these deficits be addressed?
- · Effects of
 - Organization of material
 - Constrained encoding tasks
 - Specific retrieval cues

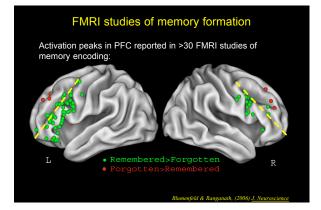

PFC lesions and memory

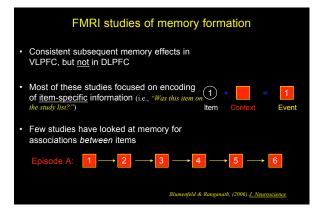

Theories generally fall into 2 classes:

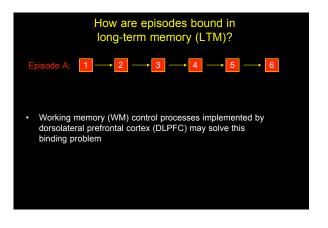

- 1. Selection accounts
- Distractibility
- Poor ability to resolve interference
- 2. Organizational accounts
 - Poor use of strategies
 - Little evidence for organizational structure in memory performance


Imaging results suggest that both accounts have some validity


Blumenfeld & Ranganath (in press) The Neuroscientist






FMRI studies of memory formation

- Consistent subsequent memory effects in VLPFC, but <u>not</u> in DLPFC
- Most of these studies focused on encoding of <u>item-specific</u> information (i.e., "Was this item on the study list?") Item Contex

Blumenfeld & Ranganath, (2006) J. Neuroscience

Event

DLPFC and relational binding in WM

- · DLPFC activation tends to be relatively weak in tasks that primarily involve
 - Selection/inhibition of stimuli or responses
 - Short-term maintenance of items or locations
- DLPFC activation tends to be seen in tasks that involve
 - processing of relationships between items - "Chunking" (Bor et al., 2004, 2005)

 - "Manipulation" (e.g., D'Esposito et al., 1999, 2000; Postle et al., 1999)
 Mathematical operations (Prabhakaran et al., 2001)
 - Extraction and integration of relationships during reasoning (Christoff et al., 2001, Kroger et al., 2002)

Hypothesis

- · DLPFC encodes relations between items in list
- Most FMRI studies focus on item-specific encoding conditions and retrieval tests
 - Encoding inter-item relations is often irrelevant and possibly detrimental to performance
- DLPFC activity should be related to successful memory formation specifically when relational encoding processes are emphasized

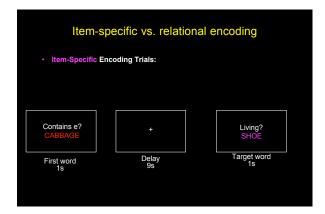
DLPFC and relational binding in WM and LTM

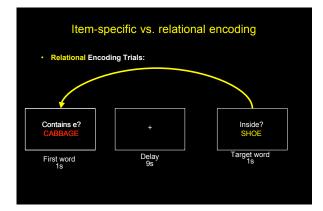
- Several studies have now shown that DLPFC activity is correlated with successful LTM formation specifically when
 - relational processing is engaged during encoding...
 - and/or when retrieval test is sensitive to organization/relational binding
 - Examples:
 - Blumenfeld & Ranganath (2006), <u>J. Neuroscience</u>
 - Murray & Ranganath (in press), <u>J. Neuroscience</u>
 Staresina & Davachi (2006), <u>J. Neuroscience</u>
 Summerfield et al. (2006), <u>PLoS Biology</u>

PFC and relational binding in WM and LTM

Question:

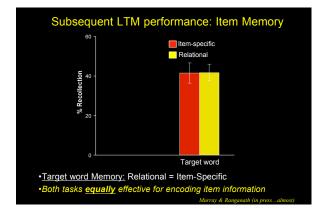
How do we bind associations between items in memory?

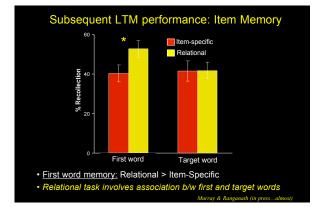

heses:

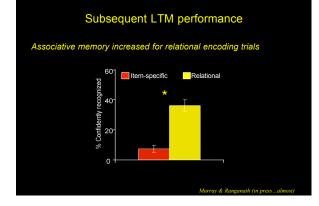

- 1. DLPFC supports relational processing during memory encoding
- 2. DLPFC activity during encoding supports successful encoding of associations between items

The experiment

Examine DLPFC activation during encoding of word pairs using tasks that focus on item-specific or relational processing






Subsequent LTM tests						
Item memory: Remember-Know test CABBAGE R K N						
<u>Associative memory:</u> Associative Recognition						
SHOE	CABBAGE 1 2	TABLE 3 4				
Activity during WM trials averaged as a function of performance on subsequent LTM test						

Overview

- On <u>item-specific</u> encoding trials, participants deeply process target word in isolation
- On <u>relational</u> encoding trials, participants build a relationship between first word and target word

Predictions

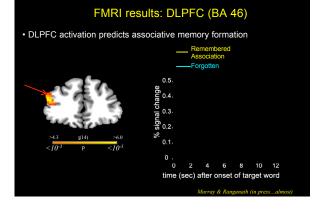
WM

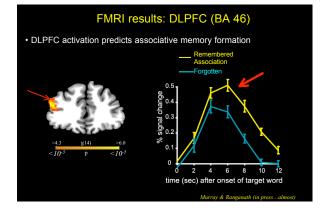
DLPFC activation during target word encoding should be
 ____ on relational than on item-specific trials

LTM

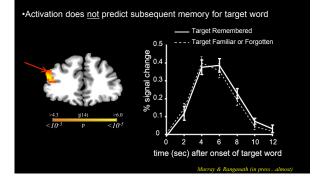
 DLPFC activity during target word should <u>specifically</u> predict subsequent memory for inter-item associations

<section-header><section-header><list-item><list-item><list-item><list-item><table-row>


Predictions

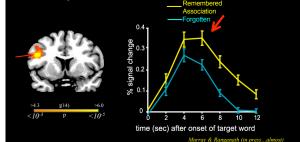

WM

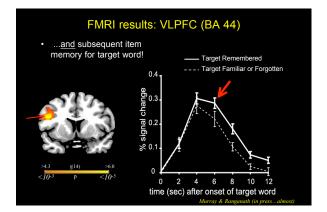
 DLPFC activation during target word higher on relational than on item-specific trials


LTM

 DLPFC activity during target word should <u>specifically</u> predict subsequent memory for inter-item associations

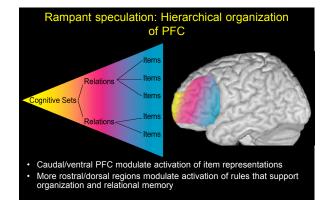
FMRI results: DLPFC (BA 46)

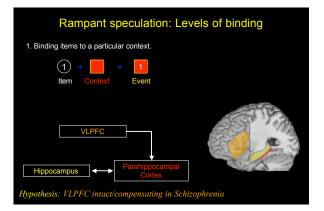

Hypotheses

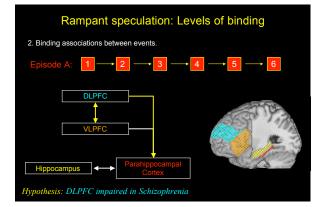

- ✓ DLPFC activity during target word higher on relational than on item-specific trials
- ✓ DLPFC activity during target word <u>specifically</u> predicts subsequent memory for inter-item associations

What about VLPFC?

FMRI results: VLPFC (BA 44)


 Target word activation predicts subsequent associative memory...





Overall summary

- 1. DLPFC activation is increased during active processing of relationships between items in <u>WM</u>
 - Semantic
 - Temporal
- DLPFC activation specifically predicts subsequent <u>LTM</u> when processing of relational information is critical
- 3. VLPFC (BA 44) activation predicts item and relational memory under a broader range of conditions

Open questions

- Relationships between individual difference variables and experimentally-studied processes
 - Often assumed to be the same...
 - ...but individual differences may be driven by genetic and environmental factors that diffusely affect multiple neurocognitive systems
 - Examples:
 - Autoimmune response during pregnancy can affect brain development
 - Genetic polymorphisms that affect efficiency of GABA-ergic transmission

Open questions

- Relationships between individual difference variables and experimentally-studied processes
- Mapping measures to processes
 Memory measures aren't process-pure

Open questions

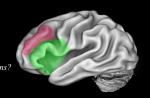
- Relationships between individual difference variables and experimentally-studied processes
- Mapping measures to processes
- Relationships between LTM and other CNTRICS content areas:
 - Perception, WM, attention, executive control, social cognition

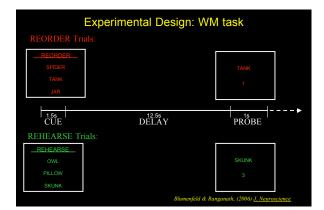
Open questions

- Relationships between individual difference variables and experimentally-studied processes
- Mapping measures to processes
- Relationships between LTM and other CNTRICS content areas
- · Potential solution:
 - Look for patterns of convergence/divergence across memory and "non-memory" measures
 Identify theory-guided factors

Acknowledgements

Our research is funded by NIMH grant 1R01MH68721



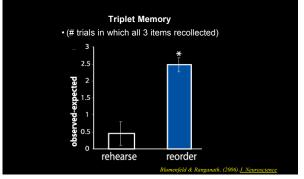

A role for DLPFC in WM and LTM

<u>WM:</u> Active Manipulation & Organization

LTM: Enhancing inter-item associations?

Experimental Design: LTM task

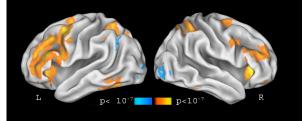
SI	PIDER	
REMEMBER	KNOW	NEW


REMEMBER: studied details? KNOW: recog. w/o details? NEW: new item?

fMRI Activity during WM trials averaged as a function of performance on subsequent LTM test

LTM Performance

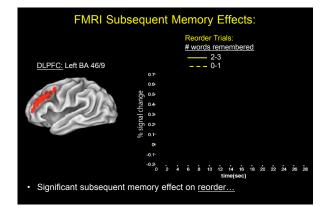
- •WM maintenance on <u>rehearse</u> trials should support LTM by building item strength
- Relational processing on <u>reorder</u> trials should support LTM by building associations between the items in each triplet

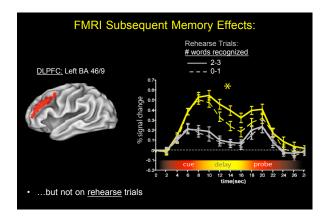

Increased relational memory on reorder trials

Predictions

- <u>WM</u>
 DLPFC activity during memory delay should be higher on reorder than on rehearse trials
- □ <u>LTM</u>
- DLPFC activity during delay period will be related to subsequent LTM <u>specifically</u> on reorder trials

REORDER - REHEARSE

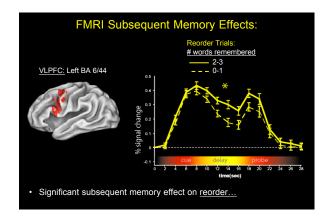


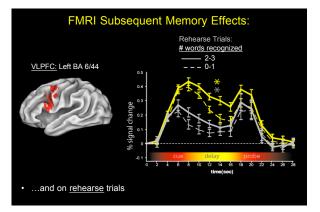

DLPFC and VLPFC: Reorder > Rehearse during delay period

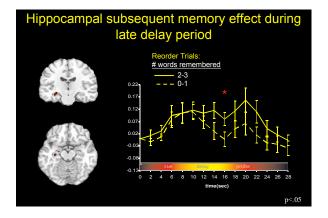
Blumenfeld & Ranganath, (2006) J. Neuroscience

Predictions

- ✓ <u>WM</u>
- DLPFC activity during memory delay higher on reorder than on rehearse trials
- LTM
- DLPFC activity during delay period will be related to subsequent LTM <u>specifically</u> on reorder trials

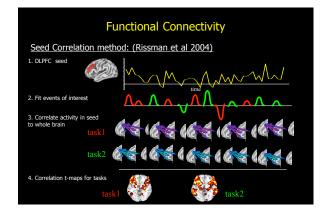

Results in DLPFC

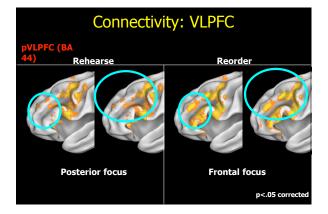

✓ <u>WM</u>

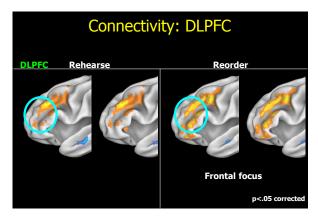

 DLPFC activity during memory delay higher on reorder than on rehearse trials

✓ <u>LTM</u>

✓ DLPFC activity during memory delay <u>specifically</u> correlated with subsequent LTM on reorder trials




Functional connectivity in prefrontal cortex


- Do different PFC subregions act as independent modules?
 No. More likely that relational processing in WM depends on interaction b/w DLPFC and VLPFC
- If so, then connectivity between DLPFC and VLPFC should be increased during reorder trials, as compared with rehearse trials.

Maintenance vs. Manipulation

- Predictions:
- Rehearse Trials: Increased connectivity b/w PFC and posterior cortex during delay period
- Reorder Trials: Increased connectivity between DLPFC and VLPFC during delay period

