Clinically-Relevant How to Build a Cognitive Task

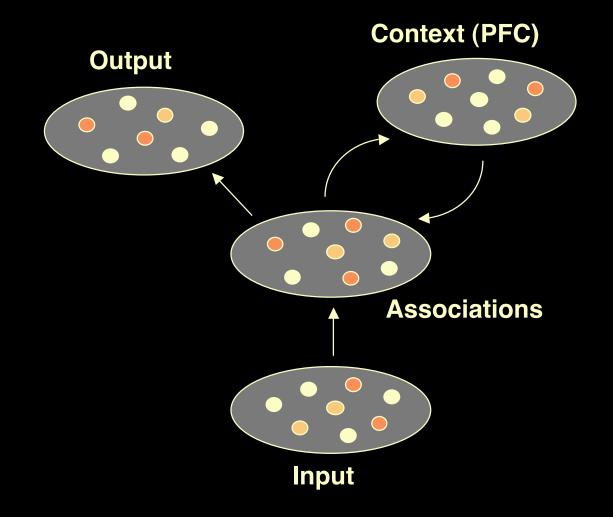
Jonathan D. Cohen

Princeton Neuroscience Institute Psychology Department Princeton University

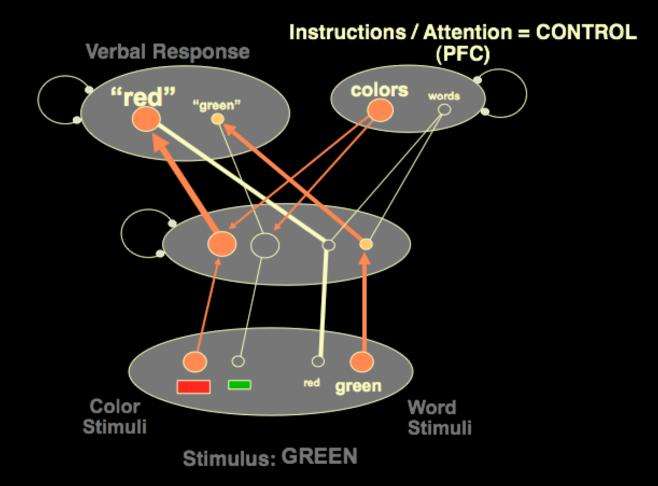
> Department of Psychiatry University of Pittsburgh

Example

• What cognitive function(s) are impaired in schizophrenia?


• Evidence (as of 1985):

- Disturbances of attention (Continuous performance task CPT)
- Disturbances of inhibition (Stroop task)
- Disturbances of language processing (Cloze procedures)
- Disturbances of working memory and executive function (WCST)


• Hypothesis:

 The disturbances across a variety of task domains may reflect a common underlying disturbance in the processing of context...

Context Hypothesis

Example: Stroop Task

Context Hypothesis

• Attention:

attentional selection relies on representation of context as a "template"

• Inhibition:

 processing of task-relevant information relies on "top-down" support from context information to compete effectively with distractor information

• Language processing:

 Virtually all lexical items are semantically ambiguous; representation of context is required for disambiguation

• Working memory:

active maintenance of context information in order to shape processing of subsequent stimuli

• Executive function:

active maintenance of goal information as context for guiding behavior

Testing the Context Hypothesis

• Problem with Stroop task:

- increased interference could be due to selective or generalized deficit

• Design a novel task that:

- specifically probes the processing of context
- can distinguish a selective vs. generalized deficit

Design principles

- Contact with (foundation in) existing literature:
 - Try to keep it as close to existing task(s) as possible
- Simplicity
 - Pare it down to the simplest form that tests for the specified function
- Specificity
 - Include conditions that selectively manipulate specified function
 - Include controls for generalized deficit

Existing Literature

- Limited processing of context
- Confounded with vigilance

Existing Literature

- Limited processing of context
- Confounded with vigilance

- Simple case of context processing
- Not optimally sensitive (no competing prepotent response)
- No control for generalized deficits

Existing Literature

• **CPT-AX** (Nuechterlien et al., 1984)

- Cleaner measure of context processing
- Not optimally sensitive (no competing prepotent response)
- No control for generalized deficits

Novel Task

• CPT-AX (Nuechterlien et al., 1984)

- Relies on context processing
- Not optimally sensitive (no competing prepotent response)
- No control for generalized deficits

• Modified CPT-AX (Cohen & Servan-Schreiber, 1990)

- AX sequences: 70%
- AY sequences: 10%
- BX sequences: 10%
- BY sequences: 10%

High frequency of AX sequences induces:

Strong association of X with target response (prepotent response)

Strong association of A with target response to next stimulus

Target response:

- AX sequences: 70%
- AY sequences: 10%
- BX sequences: 10%
- BY sequences: 10%

Correct Context-induced error Prepotent response (context-free Random responding

Target response:

- AX sequences: 70%
- AY sequences: 10%
- BX sequences: 10%
- BY sequences: 10%

Correct

Context-induced error

Prepotent response (context-fre

Random responding

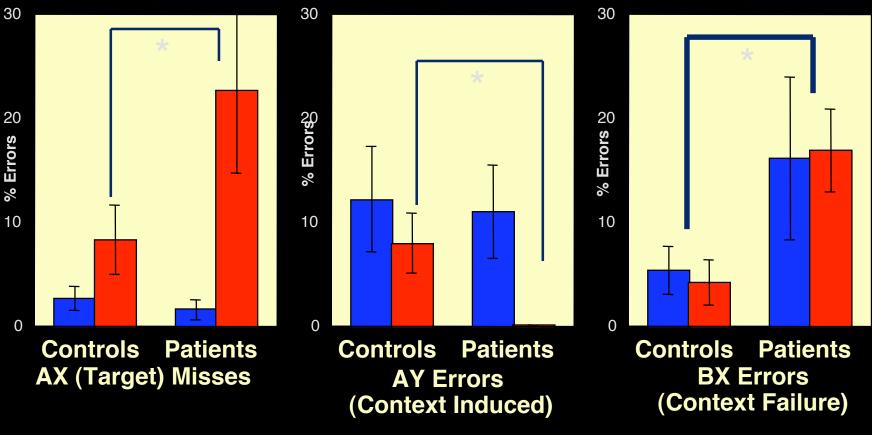
 Manipulate delay between cue (A / non-A) and probe (X / non-X to test for ability to maintain context

Target response:

- AX sequences: 70%
- AY sequences: 10%
- BX sequences: 10%
- BY sequences: 10%

Correct

Context-induced error


Prepotent response (context-fre

Random responding

- Predictions (double dissociation):
 - Patient controls: more AY (context-induced) errors than other types
 - Individuals with schizophrenia:
 - more BX (context-free) errors
 - not more BY (random) errors
 - this effect will be evident at long but not short ISIs

Representative Findings

Double Dissociation

- Participants
 - 14 Medication naïve first episode patients with schizophrenia
 - 13 Demographically similar healthy controls

Summary

• Critical manipulations:

- Frequency of AX sequences:
 - ability to use context to override prepotent response
- Delay between cue and probe:
 - ability to maintain representations of context over time

Summary

- Critical manipulations:
 - Frequency of AX sequences:
 - ability to use context to override prepotent response
 - Delay between cue and probe:
 - ability to maintain representations of context over time

• Simplicity:

- Simplest task that probes for ability to represent, maintain and use contex

• Specificity:

- Control for generalized deficit (BX vs. BY errors)
- Double dissociation: condition in which patients show improved performance relative to normal (AY sequences)
- Deficits specific to a particular population (schizophrenia) vs. controls

Validation

Construct validity

- Modeling work:
 - novel, quantitative predictions (Braver et al., 1996, 1999, 2000)
- Correlation with convergent tasks (Cohen et al., 1999):
 - Stroop
 - Language context processing task (Missing Letter)
- Imaging studies
 - involvement of prefrontal cortex (PFC) in normal participants (Barch et al., 1997)
 - Selective deficits of PFC in patients with schizophrenia (Perlstein et al., 2003)

Stability

- Test-retest reliability
- Consistency across variants (e.g., two-response version)

Challenges

• Practicality

- it is long (45 minutes)
- It is boring

• Stability

- practice effects
- test-retest reliability vs. sensitivity to state change

Standardization

- implementation
- analysis