Working Memory (Goal Maintenance and Interference Control)

> Edward E. Smith Columbia University

## Outline

- Goal Maintenance
- Interference resolution: distraction, proactive interference, and directed forgetting

#### Working Memory

• Goal Maintenance: The processes involved in activating task related goals or rules based on endogenous or exogenous cues, actively representing them in a highly accessible form, and maintaining this information over an interval during which that information is needed to bias and constrain attention and response selection.

#### Goal Maintenance

- Not a major factor in simple working memory (WM) task (e.g., item recognition)
- Major factor in WM tasks that require control processes, complex span tasks (Engle, 1989)
- Complex span tasks require shifting of goals Ex: Operations Span



**Recall Words** 

#### Working Memory

• Interference Control: The processes involved in protecting the contents of working memory from interference from either other competing internal representations or external stimuli.

## Meta-Analysis of Some Control Processes (Wager & Smith, 2003)

- Meta-Analysis distinguished between three kinds of control process
  - Continuous updating of WM (e.g., n-back)
  - Attending to order information (e.g., alpha span, n-back)
  - Dual tasking (e.g., Operation span) and/or transformation (e.g., mental arithmetic)
  - Focus: Activation in each Brodmann Area (BA) for control process vs. maintenance only



Frequencies for each executive function in comparison with storage-only tasks for each Brodmann's area



#### Interference Control

- Controlling distraction: Retroactive Interference
- Proactive interference
- Directed forgetting

## Control During Distraction: Behavioral Findings

- Distractors vs. no-distractors: minimal memory vs. good memory
- More similar distractors cause more interference
- Usurping attention vs. creating interfering representations (cross-talk) vs. dual-tasking

## Neural Evidence that Offsetting Distraction Requires Control Processing

- Patient studies: Frontal patients impaired in WM mainly when distracters presented
  - Frontal patients not impaired on memory span (D'Esposito & Postle, 2000)
  - Frontal patients impaired in auditory item recognition only when distracters present (Chao & Knight, 1995)
  - Dorsolateral PFC may be inhibiting posterior areas that represent distracters (Chao & Knight, 1998)

# Imaging Evidence for Role of PFC in Offsetting Distraction

- Focus on PFC activity when just seeing distractors: minimize dualtasking (Jha et al., 2004)
- Two different regions:
  - Ventral PFC selection among alternatives (Thompson-Schill et al., 2005)
  - Dorsolateral PFC executive attention/inhibition
- Results for delay period (15000 msec)
  - Both Left ventral and dorsal PFC activated by distractors
  - Only Left ventral PFC affected by similarity of distractors: more selection needed
  - Face area more activated when maintaining face than non-face



# Schematic of Jha et al. (2004) behavioral paradigm and task design

#### Left Ventrolateral PFC



Left Ventrolateral PFC activity by working memory domain (Jha et al., 2004)

## Connections to Schizophrenia Research

- Interference tasks
  - Schizophrenics impaired when distracters present (Fleming et al., 1995)
  - Impairment associated with less activation than normals in dorsolateral PFC
  - Impaired components: selection and attention/inhibition?

#### Proactive Interference in WM

- Interference from prior trial: Recent negatives in item recognition
- Behavioral finding: Longer RTs to recent negative probes (Monsell, 1978)
- Effect due to conflict about probe: Familiarity vs. set membership
- Imaging finding: Recent vs. nonrecent probes: Left, ventrolateral PFC selection (Jonides, Smith et al., 1998)



A schematic of the Recent-Probes task



#### Activation for recent vs. non-recent negatives (Jonides, Smith et al., 1998)



Activation for recent vs. non-recent negatives in left ventrolateral PFC (D'Esposito et al., 1999)

#### Two Kinds of Proactive Inhibition

- Familiarity of probe competes with memory of set-membership (at time of retrieval)
- Probe associated with another response, and competition occurs among responses (at time of retrieval)

#### Nelson et al. (2003) Trial structure and examples of trial conditions



#### Nelson et al. (2003) Mean reaction times for the various probe types



#### Nelson et al. (2003)

(A) Identified clusters of activation that overlap with ROIs in the response-conflict contrast (yellow) and the familiarity-conflict contrast (blue). Indicated Z-coordinates refer to MNI space. (B) The average *t* values of voxels within the identified clusters of activation in the key contrasts of interest. mPFC, medial prefrontal cortex.



## Directed Forgetting in WM

- Directed forgetting similar to offsetting distraction -- inhibition of to-be-forgotten/attention to to-be-remembered
- Different attentional/inhibitory mechanisms involved than in offsetting perceptual distraction

#### Nee & Jonides (2008) *Psychological Science* A schematic of the tasks



#### Nee & Jonides (2008) Results

|                 | Ignore                |                       |                      | Forget                |                       |                       |
|-----------------|-----------------------|-----------------------|----------------------|-----------------------|-----------------------|-----------------------|
|                 | Lure                  | Control               | Valid                | Lure                  | Control               | Valid                 |
| Mean<br>RT (SD) | <b>642.89</b> (31.14) | <b>619.82</b> (23.65) | <b>619.88</b> (25.5) | <b>698.89</b> (32.59) | <b>619.43</b> (29.87) | <b>614.18</b> (33.29) |
| Mean<br>ER (SD) | <b>1.8</b> (2.5)      | <b>3.3</b> (5.3)      | <b>3.5</b> (3.4)     | <b>9.8</b> (7.0)      | <b>5.2</b> (6.5)      | <b>14.8</b> (10.9)    |

Nee & Jonides (2008). Occipital cortex demonstrated unique Ignore activation whereas left dorsolateral prefrontal cortex demonstrated unique Suppress activation





# Nee & Jonides (2008). Regions demonstrating common interference-related activity for Ignore and Suppress



#### Summary

- Goal Maintenance
  - More of a factor in complex WM-span tasks
  - Also a factor in many cognitive-control tasks (e.g., Stroop)
- Interference Resolution
  - Three kinds: distracters, PI, directed forgetting
  - All involve conflict
  - All activate ventral or dorsal PFC