Promises and pitfalls of neurocognitive biomarkers in CNS treatment research

Ed Bullmore

CNTRICS
Evaluating potential biomarkers of cognitive function

Baltimore, MD, USA

October 29, 2009
A few promises and pitfalls of biomarkers in drug discovery

- “Harder endpoints”
- Improved disease understanding and patient stratification
- Better prediction of clinical (phase 2) efficacy from phase 1 and preclinical studies
- Seductive glamour of new technology
- Non-trivial regulatory interface
- Interpretability of exotic signals or analyses
- Cost, scale, power
Window of opportunity for MRI to make a difference to the pipeline

Strategic opportunity for MRI to inform the purpose

The translational watershed

000s of hits / target

100 leads

10s candidate selections

10s FTIH

8 POCs

2 Files

4 Phase 3 studies

The translational watershed
Pharma fMRI in a phase 2a trial of an antidepressant drug

- Parallel group, repeated-measures design

- Two groups:
  - 19 people with major depressive disorder (DSMIV, unipolar)
    - Untreated for 6 weeks
    - HAM-D > 18
  - 19 healthy volunteers

- Each group scanned twice, at baseline and 8 weeks later
  - Functional MRI at 1.5T
  - Sad facial affect processing task (explicit gender judgement)
  - Structural MRI at baseline only

- Depressed patients were treated with fluoxetine 20 mg/day after baseline scan

<table>
<thead>
<tr>
<th>Depressed</th>
<th>Healthy</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 19</td>
<td>N = 19</td>
</tr>
<tr>
<td>0</td>
<td>8 weeks</td>
</tr>
<tr>
<td>Fluoxetine 20 mg</td>
<td></td>
</tr>
</tbody>
</table>
SSRI treatment reduces amygdala activation and enhances amygdalo-frontal connectivity in depression

Arch Gen Psychiatry

Chen et al (2008)
Neuropsychopharmacology
Variability of symptomatic response to antidepressant treatment

Baseline HAM-D(0) = 20.9 (SD 2.2)
Final HAM-D(8) = 7.8 (SD 3.8)
63% symptom improvement

Normalized scores = HAM-D(t)/HAM-D(0)
Linear change coefficient B = 0.08 (SD 0.025)
No correlation between B and HAM-D(0)
Structural and functional MRI at baseline predicts symptomatic response 8 weeks later

Greater than median grey matter volume in cingulo-parietal system predicts:

- faster symptom improvement
  -10%/week vs -6%/week
- less severe final symptom scores
  - 4.2 vs 10.9

Chen et al (2007)
*Biol Psychiatry*
Sample enrichment by cingulate screening for treatment response could enhance power of early phase 2 studies of depression.

Would (f)MRI be the best marker?

What would be the downstream implications for later stage development, regulators, payers?

Randomised sample

N ~ 100-1000

Placebo

8 weeks

NCE

Endpoints

Screened sample

N ~ 100-1000

Randomised sample

N ~ 10-100

< 8 weeks?

Placebo

NCE

Endpoints

ACC volume/function > criterion
FMRI predictors of weight reduction by centrally-acting drugs

- Obesity is mainly a *behavioural* disorder of over-eating
- To get a license for an obesity indication requires data on weight reduction in 1000s of patients over 1-2 years
- Can we use neurocognitive markers of acute response to centrally acting drugs to mitigate risk of definitive weight reduction trials?

- 20 overweight/obese volunteers
- 2-way crossover design
  - 14 days placebo
  - 14 days sibutramine 10mg daily
- FMRI scanning at end of each treatment period
  - Visual presentation of high calorie foods (chocolate cake), low calorie foods (broccoli), non-food items

Fletcher et al (2009) in review
Neurocognitive markers in early clinical trials

• Functional MRI can corroborate, localise or explain at systems level a drug’s effects on mood or cognitive function disturbance in patients.

• Functional MRI seems unlikely to replace cognitive/behavioural endpoints in phase 2 any time soon.

• Imaging *predictors* of therapeutic (or placebo) response could enhance power of phase 2 studies and/or mitigate financial risk of committing to later stage phase 3 development.
Predicting antidepressant efficacy in phase 1

- 24 healthy volunteers were treated with reboxetine 4mg bd, or placebo, for 1 week each in a cross-over design.

- Brain activation by categorization of words as personally likeable or dislikeable was modulated by reboxetine in a way that was considered consistent with its therapeutic effects on negative recall bias in patients with depression.

Predicting adverse central effects: fMRI predictors of psychotogenic effects of ketamine

PK/PD studies using fMRI: pharmacological differentiation or dose finding in phase 1

Pre-clinical to clinical translation: the potential of fMRI as a marker of endogenous brain dynamics

**Rat** – fluoxetine causes increased extracellular 5HT and correlated change in baseline BOLD signal

**Human** – citalopram infusion causes increased baseline BOLD signal in fMRI data recorded with the subject lying in the scanner “at rest”
Dopaminergic drug effects can be mapped to brain functional networks measured using fMRI.

**Rat** – amphetamine enhances functional connectivity between cortical regions sharing a strong dopaminergic input from midbrain.  

**Human** – sulpiride attenuates efficiency of network connections to cingulate and temporal cortex but not global “small world” parameters.  
Scale invariance of complex network organization may support development of translational markers

Multielectrode studies of cellular networks generating beta rhythms

MEG studies of beta-band networks associated with cognitive impairment in schizophrenia

Bullmore & Sporns (2009) *Nat Rev Neurosci*
Modeling whole brain networks in multimodal human neuroimaging data

- Relatively simple tools for quantifying complex systems
- Applicable to all modalities of systems neuroscience data, from MRI to multielectrode arrays to gene expression
- Major current focus of activity in statistical physics with extensive applications

Functional brain networks can have critical dynamics over a range of spatial scales.

Beggs & Plenz (2003) *J Neurosci*

Cost efficiency of nervous systems

~300 neurons ~7000 synapses

- **Low cost**
  - Connection density ~ 3% of maximum
- **High efficiency of information transfer**
  - Global efficiency = 46% of maximum

Cost-efficiency of human brain functional networks varies with frequency and schizophrenia

- Frequency-scale specific functional networks were constructed from MEG data recorded during performance of N-back working memory task (CBDB/NIMH)
  - 19 non-psychotic adults
  - 18 people with schizophrenia

- Network cost-efficiency is greatest at higher frequencies
- Cost-efficiency of alpha and beta networks is reduced in schizophrenia
- Cost-efficiency of beta networks is positively correlated with accuracy of working memory task performance

Better cognitive performance is associated with greater cost-efficiency of high frequency functional networks

Neurocognitive markers in phase 1 and pre-clinical development

• Functional MRI as a PD marker in PK/PD studies for pharmacological differentiation or dose finding

• Functional MRI as a predictor of therapeutic response or adverse effects in healthy volunteer models

• Brain network parameters – which seem often to be scale-invariant – could serve as translational PD markers, mitigating the risk of transition from pre-clinical to clinical development
The translational watershed

- which patients will respond?
- which dose is optimal?
- which phase 1 or preclinical compounds should be prioritised?
- how can financial risks be scientifically discharged at each major transition point?
- how can experimental markers be validated and reality-tested to the point that they are acceptable in late stage and/or clinical practice?